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ON INTE~~L PRINCIPLES FOR NON~OLONO~~C SYSTEMS*'**' 

V.V. RUMIANTSEV 

The equivalence is shown of integral principles in the Halder, Voronels and Suslov 
forms, being different forms of the Hamilton principle for nonholonomic systems. 
Conditions necessary and sufficient for the stationarity of the actionsinthesense 
of Hamilton, Lagrange and Jacobi are indicated. Necessaryandsufficientconditions 
are given for the applicability to nonholonomic systems of the generalized Jacobi 
method integration of the equations of motion, which turned out to be equivalent to 
the conditions mentioned above. 

The question on the applicability to nonholonomic systems of the integral 
principles of mechanics has a long history and a large bibliography from which we 
note only certain papers. As is well known, these principles were initially estab- 
lished for holonomic systems; in the attempts to extend them to nonholonomicsystems 
there arose serious difficulties to which Hertz /l/ was apparently the first to 
direct his attention. He concluded that the Hamilton's principle is inapplicableto 
nonholonomic systems and noted that not every two points of the configuration space 
can be connected by a trajectory of the system. 

Ho"lder /2/ proposed a new integral principle and, by a specialization of the 
variation, derived from it both the Hamilton's principle as well as the Lagrange's 
principle for nonholonomic systems; in this connection, the varied motions turned 
out not to satisfy the constraint equations. In particular, Hamilton's principle 
for nonholonomic systems was obtained not in the form of the stationarity of the 
integral of the Lagrange function, as for holonomic systems, but in another form, 
viz., the equality to zero of the time integral of the variation of the Lagrange 
function. Soon after there were simultaneously published the papers /3/byVoronets 
and /4,' by Suslov, in which two new forms of the integral principle were proposed, 
outwardly different from Hblder's form; the first of these authors neitherjustified 
or named the principle he had proposed, while the second called his principle a mod- 
ification of the D'Alembert principle and stressed that is "was by no means the 
Hamilton's principle" /4/. 

Kemer /5/ compared the equations of motion of a system subject to linear dif- 
ferential constraints with the Euler equations of the variational Lagrange problem 
on stationarity of action in the sense of Hamilton in the class of curves satisfying 
the constraint equations, and showed that these equations are equivalentif andonly 
if the constraints are completely integrable. Cm the basis of this result he con- 
cluded that the Hamilton's principle, looked upon as a variational principle for a 
stationary action, is valid only for holonomic systems. 

Capon /6/ took notice of the fact that Halder's formalism differs from the 
formalism of the calculus of variations (the comparison curves do not satisfy the 
constraint equations, whereas the variations are subjecttotheconstraintconditions), 
and in connection with this declared that Hslder's results were inconsistent. 
Jeffreys /7/ and Pars /8/ simultaneously took exception to this article, coming out 
in support of Hb'lder's results. The first one of them, starting from physical 
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premises, noted that Hamilton's principle for nonholonomic systems, similar to this 

principle for holonomic systems with nonpotential forces, is not a principle of 

stationary action, but is valid in Halder's form. Pars subjected this question to 
a thorough analysis and showed that while for holonomic systems Hamilton'sprinciple 

is valid both in the form of the stationary action principle as well as in Hzlder's 

form, for nonholonomic systems only the latter form is valid. 

Novoselov /9/ showed the validity of the integral principles for systems with 
nonlinear Chetaev constraints /lo/ and proved that they yield the minimum of the 
action on a true trajectory for small integration domains, but the comparison curves 
do not satisfy the constraints. Neimark and Fufaev /11/ noted that the form of 
writing the stationary action principle", . . depends on the point of view taken on 
the permutation relations" and that, in particular, Holder's form is valid for non- 
holonomic systems. Poliakhov /12/ suggested replacing Chetaev's conditions for the 

variations by the conditions obtained by a variation of the linear or nonlinear non- 

holonomic constraints, just as is done forholonomicsystems, on the strengthofwhich 
he represented Hamilton's principle in the form of Lagrange's variational problem, 

having emphasized inthisconnection the invalidity of the opinion that Hamilton's 

principle II... does not have the character of a conditional principle" /12/. Sumbatov 

/13/ indicated conditions under which Hamilton's principle for systems with linear 

stationary constraints is the stationary action principle. Rumiantsev /14 and 15/ 
obtained conditions necessary and sufficient for finding solutionsoftheequations 

of motion of nonholonomic systems among the solutions of the Euler equations of 
Lagrange's variational problem in connection with the principles of Hamilton, 
Lagrange and Jacobi. 

From this far from complete short list of the literature it is seen that dif- 

ferent authors express frequently contradictory opinions on the question of the 

applicability of integral principles for nonholonomic systems. Closely connected 
with this question is the problem of generalizing to nonholonomic systems Jacobi's 

method of integration of the equations of motion. 

1. We consider a nonholonomic system characterized by the Lagrange function L(q, y’, t) = 
T + U and by ideal independent nonintegrable constraints 

fl (q, q', t) = 0 (1 = 1,. . ., r) (1.1) 

Here qi and qi’z dqi/dt (i = I,..., n) are generalized Lagrange coordinates and velocities, ! 

is time, T (q, q’, t) = T, + T, + T,, is the system's kinetic energy, T, are powers a, uniform 

relative to pi’, of the function (a = O,l,X),U (q-t) is the force function. Since constraints 

(1.1) are independent, they can be given as 

4;,i = 'pl (41, . . . q7,1 91’>, .1 Qk’. t) (1 = 1,. ‘1 r) (1.2) 

taking qs’ (9 = 1,. . ., k zm n -r) as independent velocities. We write the general equation of 

dynamics as 

where 6qi are virtual variables satisfying the Chetaev conditions /lo/ 

n a/, lz v6q,=O (l=l,...,r) 
r=l * 

which for constraints (1.2) take the form 

(1.3) 

(1.4) 

We integrate with respect to 1 the integral principles obtained from (1.3) within certain 

limits t, and t, corresponding to fixed positions P, and P, of the system in the configura- 

tion space, between which the system's true motion takes place. As a result of the integra- 

tion we obtainthe equality 
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Lx n 

dt= (1.6) 

Since conditions (1.4) or (1.5) do not determine 8qi, uniquely, there exists a known arbitrar- 
iness in the definition of the derivatives of 69,. We consider two definitions. 

Definition 1. The equalities /2/ 

Sq,'--$gi (i=l,...,n) (1.7) 

are hold for all velocities. 
Under this definition the variations of functions(l.1) on the virtual displacements can 

be represented, with due regard to (1.4), as 

*fl=t(%--$$)8qi (E--l, . . . . r) 
i=l 

(1.8) 

We remark that expressions (1.8) identically equal zero if all constraints (1.1) are intesr- 
able. In case of nonintegrability of (1.1) the expressions Sri+0 ; however, can 
virtue of the system's equations of motion if the constraints (1.1) are nonlinear 
or under a special choice of the variations 6qi satisfying conditions (1.4) /16/. 
straints of form (1.2) the relations (1.8) become 

vanish -by 
in ii /9/ 
For con- 

Definition 2. The equalities /4/ 

Qg*=-$-6Q5 (S=l,...,k), 6fi=O (Z=t,...,r) 

are valid; whence the conditions 
P 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

follow for the dependent velocities. The symbol% denotes the variation of the function con- 
taining 

121 o? 

the dependent velocities, in the sense of this definition. 
first we adopt Definition 1. Substituting (1.7) into (1.6), we obtain the Htllderform 
Hamilton's principle 

(1.13) 

under the conditions 

sq, = 0 for t=t,, t, (1.14) 

valid for both holonomic and nonholonomic systems. If we introduce into consideration the 
function 8 (&, . . ., q,,, &‘, . . ., qk’, t) = T i(l,2)3 being the kinetic energy Tfrom which the depend- 
ent velocities have been excluded with the aid of replacement (1.21, then we have 

Substituting (1. 1 5) into (1.13), we obtain the Voronets form /3/ of Hamilton's principle 

w=8e + (1.15) 

f, 

8 ce -t u) + 2 +&. (6qh+r - aTi)] dt = 0 
‘=I + 

(1.16) 
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under conditions (1.14). 
In Hamilton's principle the true trajectory q:(6) passing at times t0 and t, throughthe 

positions P,, and P, is compared with the varied or roundabout paths Qi(t)+ 6q, resulting from 
a simultaneous displacement of the positions on the true trajectory by the virtual displace- 
ments 69, . All the roundabout paths pass, as does the true trajectory, through the pointsP, 
and P, and the motion time along all curves is one and the same, equal to t, - t, . However, 
under the variation method being examined the roundabout paths for a nonholonomic system do 
not satisfy the constraint equations in the general case since for them, as noted above, 
Sfi # 0 (1 = 1,. . ., r), excepting the cases of fulfillment of the conditions of kinematic feasi- 
bility of the roundabout motions /16/ by virtue of either the equations of motion or of a 
special choice of the possible displacements. Therefore, for nonholonomic systems Hamilton's 
principle, in the general case, is not the variational principle of stationary action 

as in the case of holonomic systems when close kinematicallyvirtualtrajectories are compared. 
It is important to stress one further difference: a true trajectory of a nonholonomic 

system cannot pass through two arbitrarily specified points; if point P, is specified arbitrar- 
ily, then point P, must be found on a manifold of n-r dimensions dynamically accessible 
from the prescribed configuration /8/. 

We now adopt Definition 2. Using relations (l.ll), (1.12) and substituting them into 
(1.6), we obtain the Suslov form /4/ of Hamilton's principle 

(1.18) 

under conditions (1.14). Under the variation method being examined the roundabout paths sat- 
isfy in the first approximation the constraint equations, since for them Sf, = 0 (I -.= 1,. . ., r); 
however, obviously, (1.18) too is not a stationary action principle for a nonholonomic system 
in the general case. To the contrary, for a holonomic system all A?' ~0 and (1.18) takesthe 
form (1.17). The principle in form (1.18) outwardly differs from form (1.13) or from the 
equivalent form (1.161, since different definitions of the variations of the dependent veloci- 
ties are being examined. However, we can expect that when the latter are excluded these forms 
pass one into the other. Indeed, under Definition 2, 
the equality &j" = 68follows from (1.151, 

6q,+, z: &p,, as a consequence of which 
with due regard to which, as well as to relations 

(1.19), obviously that equality (1.18) is equivalent to the Voronets form (1.16) of Hamilton's 
principle. Consequently, the forms (1.13), (1.16) and (1.18) of Hamilton's principle are 
equivalent and pass one into the other when the constraint equations and the method of vary- 
ing are taken into account /4/. 

It is interesting to compare Hamilton's principle (1.13) with Lagrange's problem on the 
stationary value (1.17) of the action integral in the class of curves satisfyingtheconstraint 
Eqs.tl.1) /5/. By introducing an undetermined multipliers xl(t) this problem is reduced to 
the variational problem 

tr 

the Euler equations for which are 

(1.19) 

(1.20) 

The general solution of system (1.20), (1.1) depends on2n arbitrary constants, whereas the 
general solution of the system of the equations of motion of a nonholonomic system 

d a~ aL 
(1.21) 

and (1.1) depends on 2n - r arbitrary constants; p1 is the Lagrange multiplier. The non- 
equivalence of the equation systems (1.20) and (1.21) is obvious. However, we can convince 
ourselves that the condition /14/ 
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(1.22) 

is necessary and sufficient for a certain solution qi(t) of Eqs.(l.Zl) and (1.1) to be found 
among the solutions of Eqs.(l.ZO) and (1.1). Consequently, Hamilton's principle (1.14) has 
the character of the variational stationary action principle only for the motions of a non- 
holonomic system, satisfying condition (1.22). We note that for constraints of form (1.2) 
equality (1.22) is reduced to the conditions 

~x&+'=O (s-1, . . ..k) (1.23) 

When varying in accord with formulas (1.11) and (1.12) the principle (1.18) has the 
character of a variational stationary action principle under the conditions /13/ 

pj$&A”+’ =_(I (s=i.....k) (1.24) 

We stress that conditions (l-22)- (1.24) are fulfilled for nonholonomic systems only in in- 
frequent cases. 

2. Let us pass to the consideration of the principle of least action in the Lagrangeand 
Jacobi forms. Together with the synchronous virtual variations Sqi we examine as well the 
complete or asynchronous variations Aqi connected with the first by the relations 

89, = 6q, + qi'At (i = 1,. . ., TZ) (2.1) 

where At is an arbitrary differentiable infinitesimal function of time /16/. Under an asyn- 
chronous variation, to a position P of the system in its true motion q;(t) at instant t there 
corresponds a position P* in the varied motion Pi(t)+ Aqi at instant t j At, and such a cor- 
respondence depends upon the choice of the function At. 

We assume that the Lagrange function does not depend explicitly on time and that constr- 
aints (1.1) are homogeneous in pi', , i.e., 

aL _ o n ai, 
7”) I: ~qi’=klf~(q,q’, t)==o @=I, . . . . r) 

i=zl 

where k, is the degree of homogeneity. Under conditions (2.2) the true displacements dq, = 

qi’dt are found among the virtual ones and the energy integral /15/ 
n 

c q,*+-L=h=const 
i=l ’ 

(2.3) 

follows from Eq.(1.3). We examine such variations Aqi for which relation (2.3) is fulfilled, 
on all the roundabout paths passing through points P, and PI,, with one and the same fixed 
value of the energy constant h, equal to its value on the true trajectory. This signifies 
the fulfillment of the condition 

(2.4) 

In this case the duration of the varied motion depends on its trajectory, in connection with 
which the quantities to and tl will no longer be fixed; however, as before, all the curves 
pass through the fixed points P, and P,, i.e., we accept the conditions 

Aqi = 0 for t = t,, t, (2.5) 

instead of conditions (1.14). 
Adopting Definition 1, from (1.6) we obtain 

(2.6) 
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According to formulas (2.1) the equation 

*[L&C &dt ~.~ (Mt);: 
1" l" 

is valid, as a consequence of which, with due regard to (2.1) and (2.6), 

Bearing (2.3) in mind and using (2.4), we obtain hence the principle of least action in the 
Lagrange form /16/ 

under conditions (2.5). 
Since 

for constraints (l.l), in accord with the preceding we conclude that for nonholonomic systems 
the varied motions in the Lagrange principle do not satisfy Eqs.(l.l), whereas the true traj- 
ectory determined from (2.7) does satisfy these equations. However, by comparing the equa- 
tions of motion (1.21) with the Euler equations of the corresponding variational problem on 
the extremum of integral (2.7) in the class of curves satisfying conditions (1.1) and (2.3), 
which are reduced to Eqs. (1.20), we can show /15/ that under condition (1.22) principle (2..7), 
as also Hamilton's principle, has the character of the variational principle of stationary 
action. 

In order to by-pass the difficulties connected with an asynchronous variation we can,fol- 
lowing Jacobi, choose as the independent variable a certain parameter h continuouslyandmono- 
tonically varying between the constants h, and 1, corresponding to the system's positions P, 

and PI . When the system moves the variables pi, qi' and t are functions of h. Derivatives 
with respect to X are denoted by primes, so that 

qi’ = qi’dh/dt 

If the system's true motion between some initial position PO and final position p, is com- 
pared with the varied motions, sufficiently close to it, between those same positions P, and 

PI , taking place with the same energy h as in the real motion, then, according to Jacobi's 
principle, for the latter 

(2.8) 

under the conditions 

69, = 0 for h = h,., h, (2.9) 

on variations satisfying the equations 

2’ $6qi=0 (1==1, . . ..r) 
i=l ’ 

analogous to (1.4). The functions F (q, q’) , @ (Q, 9’) and L,(q) are determinedbythe formulas 

F (q, Q') = + 2 aij (q) Qi’Qj’, 

n 

@ (q9 Q’) = C ai (Q) Qi’v Lo(q)--o+U 

i, +I i-1 

if the quadratic form T, and the linear form T1 occurring in the Lagrange function L are 

specified as II 
.I . 

Lz (q, Q’) = + z aij (q) Qi'qj's @(Q. Cl’) = C (li ((I) Qi 

1, j31 is, 

and 

(2.10) 
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With due regard to these equalities, the transition from (2.7) to (2.8) is trivial. From 
Jacobi's principle (2.8) we can obtain the differential equations of the system's true trajec- 

tory 

which is reduced to the equation of motion (1.21) by a replacement of h by t in accord with 
(2.10). Comparing these equations with the Euler equations of the corresponding variational 
problem, we can be convinced that Jacobi's principle (2.8) has, for a nonholonomic system,the 
character of the variational stationary action princple in the class of motions satisfyingcon- 
straints (l.l), only under the condition /15/ 

(2.12) 

analogous to condition (1.22). 

3. Let us see what the necessary and sufficient conditions are for the applicability of 
Jacobi's method to nonholonomic systems. The canonic equations of motion of system (1.1) with 
constraint multipliers are 

Using the change of variables 

s+==p,+&,$ (i=l n) 3.I.' 
I-1 

the last of relations (3.2) is reduced to /14/ (XI are Lagrange multipliers) 

n 

L= 
c .wi’ - HI, 
irrl 

HI (q, ~9 t) = H (q, P, t) + z xl + qi’ 
1st 

We consider the generalized Hamilton-Jacobi equation 

for which the equations of the characteristics are 

dqi 8~~ dni 

-z-=-iq’ 
-y-$ fi=3, . . ..n) 

1 

According to Jacobi's theorem the relations 

OS 
x=+ +3* (i=l,...,n) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

are the integrals of Eqs.(3.6) if S(q,a,t) is the complete integral. of Eq.(3.51; ait Pi are 
arbitrary constants. For (3.7) to be the integrals also of the equations of motion (3.1) and 
(1.1) of a nonholonomic system , it is necessary and sufficient that the latter be equivalent 
to the Eqs.(3.6) in the sense that any solution of Eqs.(3,6) is a solution of Eqs-(3.1) and 
(l.l), and vice versa. We see that the first groups of Eqs.(3.1) and (3.6) are equivalent. 
Substituting the functions ~z(k%fi) and I-C: (t, a,&, found from relations (3,7), into Eqs.(3.3) 
and differentiating the latter with respect to t relative to (3.6), we obtain the equations 
D.71 
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(3.8) 

coinciding with the Euler Eqs.(l.20) of problem (1.19). Consequently, Eqs.(3.6) are equival- 
ent to Eqs.(3.1) and (1.1) if and only if the condition (1.22) found earlier /18,14/ is ful- 
filled. Thus, the generalized Hamilton-Jacobi method in combination with the Lagrange muli- 
plier method is applicable to nonholonomic systems if and only if Hamilton's principle bears 
the character of the variational principle of stationary action. When condition (1.22) is 
fulfilled the motions of the nonholonomic system are described by the canonic Eqs.(3.6) from 
which follows, as a corollary, the stationary action principle 

under conditions (1.14), equivalent to principle (1.13). It is interesting to remember 
the method of Chaplygin's reducing mulitplier /19/ also reduces the equations of motion 
nonholonomic system to the canonic equations of Hamilton. 
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